De Baltische staat Estland timmert al geruime tijd fors aan de weg met wat wij e-government zouden noemen: innovatief en digitaal diensten aan de burger aanbieden, van een elektronische identiteitskaart tot een compleet online loket. Veilig, snel en goedkoop. AI – oftewel machine learning – speelt daarbij een steeds grotere rol.
Door Arnoud Engelfriet
Mede gedreven vanuit de behoefte aan een kleinere overheid reduceert men het aantal ambtenaren continu, om daar AI-gedreven diensten voor in de plaats te zetten. De laatste kandidaat: de rechtspraak. Zou dat wel goed gaan?
Het Estse ministerie van Justitie heeft onlangs chief data officer Ott Velsberg gevraagd een digitale rechtbank te ontwikkelen die volautomatisch kantonzaken – tot 7.000 euro – kan vonnissen. Velsberg is geen nieuwkomer: zijn team ontwikkelde eerder een hooiveldscanner waarmee subsidies voor braakliggend land konden worden gecontroleerd, en een banenmatcher voor de uitkeringsinstantie zodat gerechtigden eerder passend werk konden vinden. En nu dus de rechtspraak.
Een groot voordeel voor Estland is dat – nu zo veel al geautomatiseerd is – het voor de burger maar als een kleine stap voelt om ook je juridische claims online in te dienen en te laten behandelen. Al dan niet met advocaat natuurlijk. Wel een grote stap verder is het automatisch laten behandelen – en dus een vonnis krijgen – van zo’n claim, zonder menselijke tussenkomst.
Helaas is er nog weinig in detail gepubliceerd over hoe het systeem moet gaan werken, maar het lijkt het bekende stramien van AI te zullen volgen. Voed het systeem met zo veel mogelijk oude zaakdossiers, koppel daaraan de uitspraak en laat het systeem ‘kauwen’ op die gegevens om lijnen en voorspellers te ontdekken. Vervolgens kun je nieuwe dossiers in het systeem plaatsen, die dan langs die lijnen worden gehouden om te zien of ze wel dan niet moeten worden toegepast.
Dit lijkt enigszins op hoe rechters nu ook werken: op basis van ervaring prik je snel door argumenten heen, zie je wat ontbreekt in het dossier of wat opmerkelijk is. En daar kun je dan een conclusie op bouwen. Maar een belangrijk verschil is natuurlijk dat een AI totaal niet de inhoud van het dossier analyseert, maar afgaat op rekensommetjes met die inhoud.
Een risico is dan ook dat een AI-rechtbank op basis van de verkeerde soort informatie conclusies trekt. Zo zou het kunnen gebeuren dat de meeste winnende eisers in de Estse hoofdstad Tallinn gevestigd zijn. Toeval, maar voor een AI significant. Die zou dan in een twijfelzaak deze vestigingsplaats de doorslag laten geven.
Natuurlijk kun je dat soort zaken filteren, bijvoorbeeld door NAW-gegevens te anonimiseren, maar dingen kunnen door blijven schemeren. Het Amerikaanse bedrijf Amazon ontdekte bijvoorbeeld dat hun sollicitatie-AI sterk de voorkeur gaf aan mannen, ook nadat men het geslacht van de kandidaat had geblokkeerd voor de brievenlezende robot. Het geslacht kon immers worden afgeleid uit hobby’s als vrouwentennis, waar natuurlijk maar weinig mannen aan meedoen. En als je ook dat verwijdert, kunnen andere factoren van betekenis zijn, zoals het bekleden van veel deeltijdbanen.
Het onderliggende probleem is dat AI alle data als even relevant behandelt, terwijl mensen hoofd- en bijzaken kunnen scheiden, en weten dat de aanschaf van een bankstel dezelfde soort geldschuld geeft als de aanschaf van een auto. Dergelijke abstracties kunnen AI’s niet maken.
Dat wil niet zeggen dat AI’s onmogelijk zijn in de rechtspraak. Een simpele variant zou een dossierchecker zijn: een zoektocht naar een ingebrekestelling in een dossier komt neer op tekstherkenning, iets waar computers beter in zijn dat mensen. En een claim wegens schadevergoeding zonder ingebrekestelling kan dan eenvoudig worden afgehandeld. AI helpt dan bij het zoeken naar feiten, naar invoer waarmee juridische regels worden ingezet. En dat lijkt een betere verdeling van de respectieve krachten.